• Olá Visitante, se gosta do forum e pretende contribuir com um donativo para auxiliar nos encargos financeiros inerentes ao alojamento desta plataforma, pode encontrar mais informações sobre os várias formas disponíveis para o fazer no seguinte tópico: leia mais... O seu contributo é importante! Obrigado.

Planetas do Sistema Solar

Grunge

GF Ouro
Membro Inactivo
Entrou
Ago 29, 2007
Mensagens
5,124
Gostos Recebidos
0
Mercúrio

mercurio00.jpg


Mercúrio é o mais próximo planeta do Sol e portanto o primeiro dos quatro planetas rochosos do sistema solar. Ele também é o menor planeta do nosso sistema, com diâmetro aproximadamente 40% menor do que o da Terra e 40% maior do que o da Lua. É até menor do que Ganímedes, uma das luas de Júpiter e Titã, uma lua de Saturno. Mercúrio teve o seu nome atribuído pelos romanos baseado no mensageiro dos deuses, de asas nos pés, porque parecia mover-se mais depressa do que qualquer outro planeta.

Ambiente geral

Se um explorador andasse pela superfície de Mercúrio, veria um mundo semelhante ao solo lunar. Os montes ondulados e cobertos de poeira foram erodidos pelo constante bombardeamento de meteoritos. Existem escarpas com vários quilômetros de altura e centenas de quilômetros de comprimento. A superfície está ponteada de crateras. O explorador notaria que o Sol parece duas vezes e meia maior do que na Terra; no entanto, o céu é sempre negro porque Mercúrio praticamente não tem atmosfera e a que tem não é decerto suficiente para causar a dispersão da luz. Se o explorador olhasse fixamente para o espaço, veria duas estrelas brilhantes. Veria uma com tonalidade creme, Vénus, e a outra azul,que seria a Terra

Satélites


Mercúrio é um dos dois planetas que orbitam o Sol que não tem satélites,álem de Vênus. Mercúrio e Vênus são considerados "planetas sem-lua".

História do conhecimento sobre o planeta

1610 - O astrônomo italiano Galileu Galilei faz a primeira observação de Mercúrio através de um telescópio. Em 1631 - O astrônomo francês Pierre Gassendi faz a primeira observação com telescópio de um trânsito de Mercúrio frente ao Sol. Em 1639 - O astrônomo italiano Giovanni Zupus descobriu que Mercúrio tinha fases (como a Lua), evidência que o planeta circunda o Sol e em 1841 - O astrônomo alemão Johann Franz Encke faz a primeira medição da massa de Mercúrio, usando as perturbações gravitacionais sobre o Cometa Encke

Antes da Mariner 10, pouco era conhecido sobre Mercúrio por causa da dificuldade de o observar com os telescópios, da Terra. Na máxima distância, visto da Terra, está apenas a 28 graus do Sol. Por isso, só pode ser visto durante o dia ou imediatamente antes do nascer-do-Sol ou imediatamente depois do pôr-do-Sol. Quando observado ao amanhecer ou ao anoitecer, Mercúrio está tão baixo no horizonte, que a luz tem que passar através do equivalente a 10 vezes a camada da atmosfera terrestre que passaria se Mercúrio estivesse diretamente por cima de nós.

Durante a década de 1880, Giovanni Schiaparelli criou um esquema onde mostrava algumas estruturas de Mercúrio. Ele concluiu que Mercúrio deveria estar "preso" ao Sol de modo a acompanhar o seu movimento, tal como a Lua está "presa" à Terra. Em 1962, radio-astrónomos estudaram as emissões rádio de Mercúrio e concluíram que o lado escuro é quente demais para estar preso, acompanhando o movimento. Era de esperar que fosse muito mais frio se estivesse sempre virado para o lado oposto ao Sol. Em 1965, os rádio-astrônomos americanos Gordon Pettengill e Rolf Dyce calcularam o período de rotação de Mercúrio como sendo de 59 +- 5 dias baseado em observações de radar. Mais tarde, em 1971, Goldstein melhorou o cálculo do período de rotação para 58.65 +- 0.25 dias por meio de observações do radar. Após observações mais próximas obtidas pela Mariner 10, o período foi definido como sendo de 58.646 +- 0.005 dias.

Rotação


Apesar de Mercúrio não estar preso ao Sol, o seu período de rotação está relacionado com o período orbital. Mercúrio roda uma vez e meia por cada órbita. Por causa desta relação de 3:2, um dia em Mercúrio (desde o nascer do Sol até ao nascer do Sol do dia seguinte) dura 176 dias terrestres, conforme se mostra no diagrama seguinte. Mercúrio leva 59 Dias para completar uma rotação completa em si mesmo.

No passado distante de Mercúrio, o seu período de rotação deve ter sido menor. Os cientistas especularam que a rotação deve ter sido de cerca de 8 horas, mas ao longo de milhões de anos foi gradualmente retardando por influência do Sol. Um modelo deste processo mostra que este retardamento levaria 109 anos e deveria ter elevado a temperatura interior de 100 graus Kelvin.

Mariner 10


Muitas das descobertas científicas sobre Mercúrio vêm da sonda espacial Mariner 10 que foi lançada em 3 de Novembro de 1973. Ela passou em 29 de Março de 1974 a uma distância de 705 quilómetros da superfície do planeta. Em 21 de Setembro de 1974 passou Mercúrio pela segunda vez e em 16 de Março de 1975 pela terceira vez. Durante estas visitas, foram obtidas mais de 2,700 fotografias, cobrindo 45% da superfície de Mercúrio. Até esta altura, os cientistas não suspeitavam que Mercúrio tinha um campo magnético. Eles pensavam que, por Mercúrio ser pequeno, o seu núcleo teria solidificado há muito tempo. A presença de um campo magnético indica que o planeta tem um núcleo de ferro que está pelo menos parcialmente fundido. Os campos magnéticos são gerados pela rotação de um núcleo condutivo fundido e este efeito é conhecido por efeito de dínamo.

A Mariner 10 mostrou que Mercúrio tem um campo magnético que tem aproximadamente 0,1% da intensidade do campo magnético da Terra. Este campo magnético está inclinado 7 graus em relação ao eixo de rotação de Mercúrio e produz uma magnetosfera à volta do planeta. A origem do campo magnético é desconhecida. Pode ser produzido pelo núcleo de ferro parcialmente líquido no interior do planeta. Outra origem do campo pode ser a magnetização remanescente das rochas férreas que foram magnetizadas quando o planeta tinha um campo magnético forte, durante a sua juventude. Quando o planeta arrefeceu e solidificou, a magnetização remanescente permaneceu.

Densidade

Já antes da Mariner 10, sabia-se que Mercúrio tinha uma alta densidade. A sua densidade é de 5.44 g/cm3 que é comparável à densidade da Terra, de 5.52g/cm3. Num estado não comprimido a densidade de Mercúrio é 5.5 g/cm3 enquanto a da Terra é apenas 4.0 g/cm3. Esta alta densidade indica que o planeta é constituído por 60 a 70 por cento em peso de metal e 30 por cento em peso de silicatos. Isto dá um núcleo com um raio de 75% do raio do planeta e um volume do núcleo de 42% do volume do planeta.

Características da superfície


As fotografias obtidas pela Mariner 10 mostram um mundo que parece a Lua. Está crivado de crateras, contém bacias de anéis e muitas correntes de lava. As crateras variam em tamanho desde os 100 metros (a resolução de imagem menor que se consegue obter pela Mariner 10) até 1,300 quilómetros e estão em vários estados de conservação. Algumas são recentes com arestas vivas e raios brilhantes. Outras estão altamente degradadas, com arestas que foram suavizadas pelo bombardeamento de meteoritos. A maior cratera em Mercúrio é a bacia Caloris Planitia. Uma bacia foi definida por William K Hartmann & Gerard Peter Kuiper (1962) como uma "depressão circular larga com anéis concêntricos distintos e linhas radiais." Outros consideram cada cratera com mais de 200 quilómetros como uma bacia. A bacia Caloris tem 1,300 quilómetros de diâmetro, e provavelmente foi causada por um projéctil com uma dimensão de mais de 100 quilómetros. O impacto produziu uma elevação com anéis concêntricos com três quilómetros de altura e expeliu matéria pelo planeta até uma distância de 600 a 800 quilómetros. (Outro bom exemplo de uma bacia com anéis concêntricos é a região Valhalla em Callisto, uma lua de Júpiter.) As ondas sísmicas produzidas pelo impacto em Caloris concentraram-se no outro lado do planeta e provocaram uma zona de terreno caótico. Após o impacto, a cratera foi parcialmente cheia com lava. Mercúrio está cheio de grandes penhascos ou escarpas que aparentemente se formaram quando Mercúrio arrefeceu e sofreu uma compressão de alguns quilómetros. Esta compressão produziu uma crusta enrugada com escarpas de quilómetros de altura e centenas de quilómetros de comprimento.

A maior parte da superfície de Mercúrio está coberta de planícies. Muitas delas são antigas e crivadas de crateras, mas algumas das planícies têm menos crateras. Os cientistas classificaram estas planícies como planícies intercrateras e planícies suaves. Planícies intercrateras estão menos saturadas de crateras que têm menos de 15 quilómetros de diâmetro. Estas planícies provavelmente foram formadas quando as correntes de lava cobriram os terrenos mais antigos. As planícies suaves são recentes com poucas crateras. Existem planícies suaves à volta da bacia Caloris. Em algumas áreas podem ser vistas pequenas porções de lava a preencher as crateras.

Formação do planeta


A história da formação de Mercúrio é semelhante à da Terra. Há cerca de 4.5 bilhões de anos formaram-se os planetas. Esta foi uma época de bombardeamento intenso sobre os planetas, que eram atingidos pela matéria e fragmentos da nebulosa de que foram formados. Logo no início desta formação, Mercúrio provavelmente ficou com um núcleo metálico denso e uma crusta de silicatos. Depois do intenso período de bombardeamento, correntes de lava percorreram o planeta e cobriram a crusta mais antiga. Por esta altura, já muitos dos fragmentos tinham desaparecido e Mercúrio entrou num período de bombardeamento mais ligeiro. Durante este período foram formadas as planícies intercrateras. Então Mercúrio arrefeceu. O núcleo contraiu-se o que por sua vez quebrou a crusta e produziu as escarpas. Durante o terceiro estágio, a lava correu pelas regiões mais baixas, produzindo as áreas mais planas. Durante o quarto estágio, bombardeamentos de micrometeoritos criaram uma superfície de poeira que é conhecida por regolito. Alguns meteoritos pouco maiores atingiram a superfície e produziram as crateras de raios luminosos. Além de colisões ocasionais de meteoritos, a superfície de Mercúrio já não é activa e permanece no mesmo estado de há milhões de anos.
 

Grunge

GF Ouro
Membro Inactivo
Entrou
Ago 29, 2007
Mensagens
5,124
Gostos Recebidos
0
Venus

venus_magellan.jpg


Vénus é o segundo planeta do Sistema Solar em ordem de distância a partir do Sol. Recebe seu nome em honra da deusa romana do amor Vénus. Trata-se de um planeta do tipo terrestre ou telúrico, chamado com frequência de planeta irmão da Terra, já que ambos são similares quanto ao tamanho, massa e composição. A órbita de Vénus é uma elipse praticamente circular, com uma excentricidade de menos de 1%.

Vénus se encontra mais próximo do Sol do que a Terra, podendo ser encontrado aproximadamente na mesma direção do Sol (sua maior inclinação é de 47,8°). Da Terra pode ser visto somente algumas horas antes da alvorada ou depois do ocaso. Apesar disso, quando Vénus está mais brilhante pode ser visto durante o dia, sendo um dos dois únicos corpos celestes que podem ser vistos tanto de dia como de noite (sendo o outro a Lua). Vénus é normalmente conhecido como a estrela da manhã (Estrela d'Alva) ou estrela da tarde (vésper) ou ainda Estrela do Pastor. Quando visível no céu noturno, é o objeto mais brilhante do firmamento, além da Lua, devido ao seu grande brilho, cuja magnitude pode chegar a -4,4 (costuma-se ser da magnitude de -3,8)

Por este motivo, Vénus era conhecido como o planeta desde os tempos pré-históricos. Seus movimentos no céu eram conhecidos pela maioria das antigas civilizações, adquirindo importância em quase todas as interpretações astrológicas do movimento planetário. Em particular, a civilização maia elaborou um calendário religioso baseado nos ciclos de Vénus (ver Calendário maia). O símbolo do planeta Vénus é uma representação estilizada do símbolo da deusa Vénus: um círculo com uma pequena cruz abaixo, utilizado também para representar o sexo feminino.

O adjetivo venusiano é mais comumente usado para Vénus, embora seja etimologicamente incorreto. O verdadeiro adjetivo do latim, venéreo, não é usado porque a aceitação moderna da palavra se associa com as enfermidades venéreas, particularmente as de transmissão sexual.

Órbita

Os outros planetas exibem órbitas elípticas, ao contrário de Vénus, que tem uma órbita parecida com um círculo, com uma excentricidade inferior a 1%.

Como Vénus está mais próximo do Sol do que a Terra, sempre aparece próximo deste, sendo que a máxima distância angular entre ambos os corpos é de 47,8°. Deste modo na Terra pode ser visto poucas horas antes do amanhecer (quando recebe o nome de estrela da manhã ou Estrela d'Alva) ou pouco depois do anoitecer (quando recebe o nome de Estrela Vésper). Nos períodos em que Vénus está mais brilhante pode sem dúvida ser visto durante o dia, sendo um dos dois únicos corpos celestes que podem ser vistos tanto de dia como de noite (sendo o outro a Lua).

O ciclo entre duas inclinações máximas dura 584 dias. Depois de 584 dias Vénus aparece numa posição a 72° da inclinação anterior. Depois de 5 períodos de 72° em uma circunferência, Vénus regressa ao mesmo ponto do céu a cada 8 anos (menos dois dias correspondentes aos anos bissextos). Este período era conhecido como o ciclo Sothis no Antigo Egito.

Na conjunção inferior, Vénus pode se aproximar da Terra mais do que nenhum outro planeta. No dia 16 de Dezembro de 1850, Vénus alcançou uma distância mais próxima da Terra desde 1800 com um valor de 39.514.827 quilômetros (0,26413854 UA). Esta será a aproximação mais próxima da Terra até o ano 2101, quando Vénus alcançará uma distância de 39.541.578 quilômetros (0,26431736 UA).

Rotação

Observado de um ponto hipotético localizado acima do pólo Norte do Sol, Vénus gira sobre si mesmo lentamente num movimento de Leste a Oeste (sentido horário) ao invés de Oeste a Leste (movimento anti-horário) como os demais planetas (exceto Urano). Não se sabe o porquê desta peculiar rotação de Vénus. Se se pudesse ver o Sol na superfície de Vénus, este nasceria no Oeste e poria no Leste com uma duração dia-noite de 116,75 dias terrestres, correspondendo um ano terrestre a 1,92 dias venusianos. Apesar da rotação horária, os períodos de rotação e orbital de Vénus estão sincronizados de tal maneira que sempre apresenta a mesma face do planeta à Terra quando ambos os corpos estão a menor distância. Isto poderia ser uma simples coincidência, porém existem especulações sobre uma possível origem desta sincronização como resultado da ação das marés, afetando a rotação de Vénus quando ambos os corpos estão suficientemente próximos.

Atmosfera


Vénus possui uma densa atmosfera, composta em sua maior parte por dióxido de carbono e uma pequena quantidade de nitrogênio. A pressão atmosférica ao nível do solo é de 90 vezes superior a pressão atmosférica na superfície terrestre (uma pressão equivalente a uma profundidade de um quilômetro abaixo do nível do mar na Terra). A enorme quantidade de CO2 da atmosfera provoca um forte efeito estufa que eleva a temperatura da superfície do planeta até 460 °C nas regiões menos elevadas ao redor do Equador. Isto faz Vénus ser mais quente do que Mercúrio, apesar de estar a mais do que o dobro da distância do Sol que este e receber somente 25% de sua radiação solar (2.613,9 W/m² na atmosfera superior e 1.071,1 W/m² na superfície). Devido à inércia térmica de sua pesada atmosfera e ao transporte de calor pelos fortes ventos de sua atmosfera, a temperatura não varia de forma significativa entre o dia e a noite. Apesar da lenta rotação de Vénus (menos de uma rotação por ano venusiano, equivalente a uma velocidade de rotação no Equador de 6,5km/h), os ventos da atmosfera superior circundam o planeta em somente 4 dias, distribuindo eficazmente o calor. Além do movimento zonal da atmosfera de Oeste a Leste, há um movimento vertical em forma de célula de Hadley, que transporta o calor do Equador até as regiões polares, incluindo as latitudes médias do lado não iluminado do planeta.

A radiação solar quase não alcança a superfície do planeta. As densas camadas de nuvens refletem a maior parte da luz do Sol ao espaço, e a maior parte da luz que atravessa as nuvens é absorvida pela atmosfera. Isto impede a maior parte da luz do Sol de aquecer a superfície. O albedo bolométrico de Vénus é de aproximadamente 60%, e seu albedo visual é ainda maior, o qual conclui que, apesar de encontrar-se mais próximo do Sol do que a Terra, a superfície de Vénus não se aquece nem se ilumina como era de esperar pela radiação solar que recebe. Na ausência do efeito estufa, a temperatura na superfície de Vénus poderia ser similar à da Terra. O enorme efeito estufa, associado à imensa quantidade de CO2 na atmosfera retém o calor, provocando as elevadas temperaturas deste planeta.

Os fortes ventos na parte superior das nuvens podem alcançar 350 km/h, embora a nível do solo, os ventos são muito mais lentos. Apesar disto, devido a altíssima pressão da atmosfera na superfície de Vénus, estes fracos ventos exercem uma força considerável contra os obstáculos. As nuvens são compostas principalmente por gotículas de dióxido de enxofre e ácido sulfúrico, e cobrem o planeta por inteiro, ocultando a maior parte dos detalhes da superfície à observação externa. A temperatura da parte superior das nuvens (a 70 km acima da superfície) é de -45 °C. A temperatura média da superfície de Vénus, é de 464 °C. A temperatura da superfície nunca é menor do que 400 °C.

Características da superfície

Vénus tem uma lenta rotação retrógrada, o que significa que gira de Leste a Oeste, ao invés de fazê-lo de Oeste a Leste como fazem a maioria dos demais planetas. (Plutão e Urano também tem uma rotação retrógrada, embora o eixo de rotação de Urano, inclinado a 97,86°, praticamente segue o plano orbital). Se desconhece porque Vénus é diferente neste aspecto, embora poderia ser o resultado de uma colisão com um grande asteróide em algum momento do passado remoto. Além desta rotação retrógrada incomum, o período de rotação de Vénus e sua órbita estão quase sincronizados, de maneira que sempre apresenta o mesmo lado para a Terra, quando os dois planetas se encontram em sua máxima aproximação (5.001 dias venusianos entre cada conjunção inferior). Isto poderia ser o resultado das forças das marés que afetam a rotação de Vénus cada vez que os planetas se encontram suficientemente próximos, embora não se conhece com clareza o mecanismo.

Vénus tem duas mesetas principais em forma de continentes, elevando-se sobre uma vasta planície. A meseta do Norte é chamada de Ishtar Terra, e contém a maior montanha de Vénus (Aproximadamente dois quilômetros mais alta que o Monte Everest), chamada de Maxwell Montes em honra de James Clerk Maxwell. Ishtar Terra tem o tamanho aproximado da Austrália. No hemisfério Sul se encontra Aphrodite Terra, maior que o anterior e com o tamanho equivalente ao da América do Sul. Entre estas mesetas existem algumas depressões do terreno, que incluem Atalanta Planitia, Guinevere Planitia e Lavinia Planitia. Com a única exceção do Maxwell Montes, todas as características distinguíveis do terreno (acidentes geográficos) adotam nomes de mulheres mitológicas.

A densa atmosfera de Vénus faz com que os meteoritos se desintegrem rapidamente na sua descida à superfície, embora os maiores possam chegar à superfície, originando uma cratera quando têm energia cinética suficiente. Por causa disto, não podem formar crateras de impacto com menos de 3,2 quilômetros de diâmetro.

Aproximadamente 90% da superfície de Vénus parece consistir em basalto recentemente solidificado (em termos geológicos) com muito poucas crateras de meteoritos. As formações mais antigas presentes em Vénus não parecem ter mais de 800 milhões de anos, sendo a maior parte do solo consideravelmente mais jovem (não mais do que algumas centenas de milhões de anos em sua maior parte), o qual sugere que Vénus sofreu um cataclisma que afetou a sua superfície, e não faz muito tempo no passado geológico.

O interior do planeta Vénus é provavelmente similar ao da Terra: um núcleo de ferro de 3.000 km de raio, com um manto rochoso que forma a maior parte do planeta. Segundo dados dos medições gravitacionais da sonda Magellan, a crosta de Vénus é mais dura e grossa do que se havia pensado. É sabido que Vénus não tem placas tectônicas móveis como a Terra, porém em seu lugar se produzem massivas erupções vulcânicas que inundam a sua superfície com lava fresca. Outras descobertas recentes sugerem que Vénus está vulcanicamente ativo.

O campo magnético de Vénus é muito fraco comparado com o de outros planetas do Sistema Solar. Isto se pode dever a sua lenta rotação, insuficiente para formar o sistema de «dínamo interno» de ferro líquido. Como resultado disto, o vento solar atinge a atmosfera de Vénus sem ser filtrado. Se supõe que Vénus teve originalmente tanta água como a Terra, pois que ao estar submetida a ação do Sol sem nenhum filtro protetor, o vapor d'água na alta atmosfera se dissocia em hidrogênio e oxigênio, escapando o hidrogênio ao espaço por causa da sua baixa massa molecular. A porcentagem de deutério (um isótopo pesado do hidrogênio que não escapa tão facilmente) na atmosfera de Vénus parece apoiar esta teoria. Se supõe que o oxigênio molecular se combinou com os átomos da crosta (embora grandes quantidades de oxigênio permanecem na atmosfera em forma de dióxido de carbono). Por causa desta seca, as rochas de Vénus são muito mais pesadas que as da Terra, o qual favorece a formação de montanhas maiores, vales profundos e outras formações.

Observações históricas


Vénus é o astro mais característico no céu da manhã e da tarde da Terra (depois do Sol e da Lua), e é conhecido pelo Homem desde a pré-história. Um dos documentos mais antigos que sobreviveram da biblioteca babilônica de Assurbanípal, datado de 1600 a.C., é um registro de 21 anos do aspecto de Vénus (que os primeiros babilônios chamaram de Nindaranna). Os antigos sumérios e babilônios chamaram Vénus «Dil-bat» ou «Dil-i-pat»; na cidade mesopotâmica de Akkad era a estrela da deusa-mãe Ishtar, e em chinês seu nome é «Jīn-xīng» (金星), o planeta do elemento metal.

Vénus é considerado como o mais importante dos corpos celestes observados pelos maias, que o chamaram «Chak ek» (a grande estrela). Possivelmente se deu mais importância junto com o Sol. Os maias estudaram atentamente os movimentos de Vénus. Pensaram que as posições de Vénus e outros planetas tinham influência sobre a vida na Terra, porque os maias e outras culturas pré-colombianas programaram suas guerras e outros eventos importantes baseando-se em suas observações. No códice de Dresden, os maias incluíram um almanaque em que mostravam o ciclo completo de Vénus, em cinco grupos de 584 dias cada um (aproximadamente oito anos), depois dos quais se repetia o mesmo esquema (Vénus dá treze voltas ao redor do Sol praticamente no mesmo tempo que a Terra tarda em dar oito).

Os antigos gregos pensavam que as aparições matutinas e vespertinas de Vénus eram dois corpos diferentes, e os chamaram de «Héspero» quando aparecia no céu do oeste ao entardecer e «Fósforo» quando aparecia no céu do leste ao amanhecer. Foi Pitágoras quem primeiro falou que ambos os objetos eram o mesmo planeta. No século IV a.C., Heráclides Pôntico propôs que tanto Vénus como Mercúrio orbitavam o Sol ao invés de orbitar a Terra. O nome Vénus significa deusa romana do amor e da beleza.

Vénus está mais brilhante quando 25% de seu disco (aproximadamente) se encontra iluminado, o que ocorre 37 dias antes da conjunção inferior (no céu vespertino) e 37 dias depois da conjunção (no céu matutino). Sua maior inclinação e altura sobre o horizonte se produz aproximadamente 70 dias antes e depois da conjunção inferior, momento em que mostra a fase média; entre estes intervalos, Vénus é visível durante as primeiras e últimas horas do dia se o observador saber de onde localizá-lo. O período de movimento retrógrado é de vinte dias em cada lado da conjunção inferior.

Em raras ocasiões, Vénus pode ser visto no céu da manhã e da tarde no mesmo dia. Isto sucede quando Vénus se encontra em sua máxima separação a respeito da eclíptica e ao mesmo tempo, esse encontra na conjunção inferior; daí então de um dos nossos hemisférios se pode ver em ambos os momentos. Esta oportunidade apresentou recentemente para os observadores do hemisfério Norte durante alguns dias a partir de 29 de março de 2001, e o mesmo sucedeu no hemisfério Sul em 19 de agosto de 1999. Estes eventos se repetem a cada oito anos de acordo com o ciclo sinódico do planeta.

No século XIX, muitos observadores atribuíram a Vénus um período de rotação aproximado de 24 horas. O astrônomo italiano Giovanni Schiaparelli foi o primeiro a prever um período de rotação significativamente menor, propondo que a rotação de Vénus estava bloqueada pelo Sol (o mesmo que propôs para Mercúrio). Embora realmente não seja verdade para nenhum dos dois corpos, era uma estimação bastante aproximada. A quase ressonância entre sua rotação e a maior aproximação da Terra ajudou a criar esta impressão, já que Vénus sempre aparece na mesma face quando se encontra na melhor posição para ser observado. O período de rotação de Vénus foi observado pela primeira vez durante a conjunção de 1961 através de uma antena de radar de 26 metros em Goldstone, Califórnia, a partir do observatório de radioastronomia Jodrell Bank no Reino Unido e nas instalações de espaço profundo da União Soviética de Yevpatoria. A precisão foi refinada nas seguintes conjunções, principalmente às de Goldstone e Yevpatoria. O sentido de rotação retrógrado deste planeta não foi confirmado até 1964.

Antes das observações de rádio dos anos sessenta, muitos acreditam que Vénus tinha um ambiente como o da Terra. Isto era devido ao tamanho do planeta e do seu raio orbital, que sugeriam claramente uma situação parecida com a da Terra, assim como a grossa camada de nuvens que impediam ver a superfície. Entre as especulações sobre Vénus estavam as de que este tinha um ambiente selvagem, e que possuía oceanos de petróleo e de água carbonatada. Sem dúvida, as observações através de microondas em 1956 por C. Mayer et al, indicavam uma alta temperatura da superfície de 600 K. Estranhamente, as observações feitas por A.D. Kuzmin na banda milimétrica indicavam temperaturas muito mais baixas. Duas teorias contrárias explicavam o incomum espectro de rádio: uma delas sugeria que as altas temperaturas se originavam na ionosfera e a outra sugeria uma superfície quente.

Exploração espacial de Vénus


A órbita de Vénus é 28 por cento mais próxima do Sol do que a Terra. Por este motivo, as naves espaciais que viajam até Vénus devem percorrer mais de 41 milhões de quilómetros adentrando-se no campo gravitacional do Sol, perdendo no processo parte de sua energia potencial. A energia potencial se transforma então em energia cinética, o que se traduz em um aumento da velocidade da nave. Por outro lado, a atmosfera de Vénus não impede as manobras de freio atmosférico do mesmo tipo que as outras naves efetuaram sobre Marte, já que para isto é necessário contar com uma informação extremamente precisa da densidade atmosférica nas camadas superiores e, sendo Vénus um planeta de atmosfera densa, suas camadas exteriores são muito mais variadas e complexas do que Marte.

A primeira sonda a visitar Vénus foi a sonda espacial soviética Venera 1, no dia 12 de Fevereiro de 1961, sendo a primeira sonda lançada para outro planeta. A nave foi avariada em sua trajetória, e a primeira sonda a chegar a Vénus com sucesso foi a americana Mariner 2, em 1962. Em 1 de Março de 1966, a sonda soviética Venera 3 estatelou sobre a superfície de Vénus, convertendo-se na primeira nave espacial em alcançar a superfície de outro planeta. Em continuação, diversas sondas soviéticas foram se aproximando cada vez mais com o objetivo de pousar sobre a superficie venusiana. A Venera 4 entrou na atmosfera de Vénus do dia 18 de Outubro de 1967 e foi a primeira sonda a transmitir dados medidos diretamente de outro planeta. A cápsula mediu temperaturas, pressões, densidades, e realizou onze experimentos químicos para analisar a atmosfera. Seus dados mostravam 95% de dióxido de carbono, e em combinação com os dados da sonda Mariner 5, mostrou que a pressão da superfície era muito maior do que o previsto (entre 75 e 100 atmosferas). O primeiro pouso com êxito na superfície de Vénus foi realizado pela sonda Venera-7, no dia 15 de Dezembro de 1970. Esta sonda revelou que as temperaturas da superfície do planeta estão entre 457 e 474 °C . A Venera-8 aterrissou em 22 de Julho de 1972. Apesar de todos os dados sobre pressões e temperaturas, seu fotômetro mostrou que as nuvens de Vénus formavam uma camada compacta que terminava a 35 quilômetros acima da superfície.

A Agência Espacial Européia tem uma missão a Vénus chamada Vénus Express que está estudando a atmosfera e as características da superfície de Vénus em órbita. A missão foi lançada no dia 09 de novembro de 2005 pelo foguete Soyuz e chegou a Vénus no dia 11 de abril de 2006, depois de aproximadamente 150 dias de viagem. A Agência Espacial Japonesa (JAXA) planeja também uma missão a Vénus entre 2008 e 2009.
 

Grunge

GF Ouro
Membro Inactivo
Entrou
Ago 29, 2007
Mensagens
5,124
Gostos Recebidos
0
Terra

imagem_planeta_terra.jpg


A Terra é um planeta do sistema solar, sendo o terceiro em ordem de afastamento do Sol e o quinto em diâmetro. É o maior dos quatro planetas telúricos. Entre os planetas do Sistema Solar, a Terra tem condições únicas: mantém grandes quantidades de água, tem placas tectónicas e um forte campo magnético. A atmosfera interage com os sistemas vivos. A ciência moderna coloca a Terra como único corpo planetário que possui vida da forma a qual conhecemos. Alguns cientistas como James Lovelock consideram que a Terra é um sistema vivo chamado Gaia.

O planeta Terra tem aproximadamente uma forma esférica, mas a sua rotação causa uma deformação para a forma elipsóidal (achatada aos pólos). A forma real da Terra é chamada de Geóide, apresenta forma muito irregular, ondulada, matematicamente complexa.

Estrutura da Terra


O interior da Terra, assim como o interior de outros planetas telúricos, é dividido por critérios químicos em uma camada externa (crosta) de silício, um manto altamente viscoso, e um núcleo que consiste de uma porção sólida envolvida por uma pequena camada líquida. Esta camada líquida dá origem a um campo magnético devido a convecção de seu material, eletricamente condutor.

O material do interior da Terra encontra frequentemente a possibilidade de chegar à superfície, através de erupções vulcânicas e fendas oceânicas. Muito da superfície terrestre é relativamente novo, tendo menos de 100 milhões de anos; as partes mais velhas da crosta terrestre têm até 4,4 mil milhões de anos.

Camadas terrestres, a partir da superfície:


* Litosfera (de 0 a 60,2km)
* Crosta (de 0 a 30/35 km)
* Manto (de 60 a 2900 km)
* Astenosfera (de 100 a 700 km)
* Núcleo externo (líquido - de 2900 a 5100 km)
* Núcleo interno (sólido - além de 5100 km)

Tomada por inteiro, a Terra possui aproximadamente seguinte composição em massa:

* 34,6% de Ferro
* 29,5% de Oxigênio
* 15,2% de Silício
* 12,7% de Magnésio
* 2,4% de Níquel
* 1,9% de Enxofre
* 0,05% de Titânio

O interior da Terra atinge temperaturas de 5.270 K. O calor interno do planeta foi gerado inicialmente durante sua formação, e calor adicional é constantemente gerado pelo decaimento de elementos radioativos como urânio, tório, e potássio. O fluxo de calor do interior para a superfície é pequeno se comparado à energia recebida pelo Sol (a razão é de 1/20k).

Núcleo

A massa específica média da Terra é de 5,515 toneladas por metro cúbico, fazendo dela o planeta mais denso no Sistema Solar. Uma vez que a massa específica do material superficial da Terra é apenas cerca de 3000 quilogramas por metro cúbico, deve-se concluir que materiais mais densos existem nas camadas internas da Terra (devem ter uma densidade de cerca de 8.000 quilogramas por metro cúbico). Em seus primeiros momentos de existência, há cerca de 4,5 bilhões de anos, a Terra era formada por materiais líquidos ou pastosos, e devido à ação da gravidade os objetos muito densos foram sendo empurrados para o interior do planeta (o processo é conhecido como diferenciação planetária), enquanto que materiais menos densos foram trazidos para a superfície. Como resultado, o núcleo é composto em grande parte por ferro (80%), e de alguma quantidade de níquel e silício. Outros elementos, como o chumbo e o urânio, são muitos raros para serem considerados, ou tendem a se ligar a elementos mais leves, permanecendo então na crosta.

O núcleo é dividido em duas partes: o núcleo sólido, interno e com raio de cerca de 1.250 km, e o núcleo líquido, que envolve o primeiro. O núcleo sólido é composto, segundo se acredita, primariamente por ferro e um pouco de níquel. Alguns argumentam que o núcleo interno pode estar na forma de um único cristal de ferro. Já o núcleo líquido deve ser composto de ferro líquido e níquel líquido (a combinação é chamada NiFe), com traços de outros elementos. Estima-se que realmente seja líquido, pois não tem capacidade de transmitir certas ondas sísmicas. A convecção desse núcleo líquido, associada a agitação causada pelo movimento de rotação da Terra, seria responsável por fazer aparecer o campo magnético terrestre, através de um processo conhecido como teoria do dínamo. O núcleo sólido tem temperaturas muito elevadas para manter um campo magnético (veja temperatura Curie), mas provavelmente estabiliza o campo magnético gerado pelo núcleo líquido.

Evidências recentes sugerem que o núcleo interno da Terra pode girar mais rápido do que o restante do planeta, a cerca de 2 graus por ano.

Tanto entre a crosta e o manto como entre o manto e o núcleo existem zonas intermediárias de separação, as chamadas descontinuidades. Entre a crosta e o manto há a descontinuidade de Mohorovicic.

Manto

O manto estende-se desde cerca de 30 km e por uma profundidade de 2900 km. A pressão na parte inferior do mesmo é da ordem de 1,4 milhões de atmosferas. É composto por substâncias ricas em ferro e magnésio. Também apresenta características físicas diferentes da crosta. O material de que é composto o manto pode apresentar-se no estado sólido ou como uma pasta viscosa, em virtude das pressões elevadas. Porém, ao contrário do que se possa imaginar, a tendência em áreas de alta pressão é que as rochas mantenham-se sólidas, pois assim ocupam menos espaço físico do que os líquidos. Além disso, a constituição dos materiais de cada camada do manto tem seu papel na determinação do estado físico local. (O núcleo interno da Terra é sólido porque, apesar das imensas temperaturas, está sujeito a pressões tão elevadas que os átomos ficam compactados; as forças de repulsão entre os átomos são vencidas pela pressão externa, e a substância acaba se tornando sólida.)

A viscosidade no manto superior (astenosfera) varia entre 1021 a 1024 pascal segundo, dependendo da profundidade. Portanto, o manto superior pode deslocar-se vagarosamente. As temperaturas do manto variam de 100 graus Celsius (na parte que faz interface com a crosta) até 3500 graus Celsius (na parte que faz interface com o núcleo).

Crosta

A crosta (que forma a maior parte da litosfera) tem uma extensão variável de acordo com a posição geográfica. Em alguns lugares chega a atingir 70 km, mas geralmente estende-se por aproximadamente 30 km de profundidade. É composta basicamente por silicatos de alumínio, sendo por isso também chamada de Sial.

Existem doze tipos de crosta, sendo os dois principais a oceânica e a continental, sendo bastante diferentes em diversos aspectos. A crosta oceânica, devido ao processo de expansão do assoalho oceânico e da subducção de placas, é relativamente muito nova, sendo a crosta oceânica mais antiga datada de 160 Ma, no oeste do pacífico. É de composição basáltica e é cobertas por sedimentos pelágicos e possuem em média 7km de espessura.

A crosta continental é composta de rochas félsicas a ultramáficas, tendo composição média granodiorítica e espessura média entre 30 e 40km nas regiões tectonicamente estáveis (crátons), e entre 60 a 80km nas cadeias montanhosas como os Himalaias e os Andes. As rochas mais antigas possuem até 3,96 Ma e existem rochas novas ainda em formação.

A fronteira entre manto e crosta envolve dois eventos físicos distintos. O primeiro é a descontinuidade de Mohorovicic (ou Moho) que ocorre em virtude da diferença de composição entre camadas rochosas (a superior contendo feldspato triclínico e a inferior, sem o mesmo). O segundo evento é uma descontinuidade química que foi observada a partir da obdução de partes da crosta oceânica.

Formação do planeta Terra


O planeta teria se formado pela agregação de poeira cósmica em rotação, aquecendo-se depois, por meio de violentas reações químicas. O aumento da massa agregada e da gravidade catalisou impactos de corpos maiores. Essa mesma força gravitacional possibilitou a retenção de gases constituindo uma atmosfera primitiva. Os processos de formação do planeta Terra são a acreção, diferenciação e desintegração radioactiva.

O envoltório atmosférico primordial atuou como isolante térmico, criando o ambiente na qual se processou a fusão dos materiais terrestres. Os elementos mais densos e pesados, como o ferro e o níquel, migraram para o interior; os mais leves localizaram-se nas proximidades da superfície. Dessa forma, constituiu-se a estrutura interna do planeta, com a distinção entre o núcleo, manto e crosta (litosfera). O conhecimento dessa estrutura deve-se à propagação de ondas sísmicas geradas pelos terremotos. Tais ondas, medidas por sismógrafos, variam de velocidade ao longo do seu percurso até a superfície, o que prova que o planeta possui estrutura interna heterogênea, ou seja, as camadas internas possuem densidade e temperatura distintas.

A partir do resfriamento superficial do magma, consolidaram-se as primeiras rochas, chamadas magmáticas ou ígneas, dando origem a estrutura geológica denominado escudos cristalinos ou maciços antigos. Formou-se, assim, a litosfera ou crosta terrestre. A liberação de gases decorrente da volatização da matéria sólida devido a altas temperaturas e também, posteriormente, devido ao resfriamento, originou a atmosfera, responsável pela ocorrência das primeiras chuvas e pela formação de lagos e mares nas áreas rebaixadas. Assim, iniciou-se o processo de intemperismo (decomposição das rochas) responsável pela formação dos solos e conseqüente início da erosão e da sedimentação.

As partículas minerais que compõem os solos, transportados pela água, dirigiram-se, ao longo do tempo, para as depressões que foram preenchidas com esses sedimentos, constituindo as primeiras bacias sedimentares (bacias sedimentares são depressões da crosta, de origem diversa, preenchidas, ou em fase de preenchimento, por material de natureza sedimentar), e, com a sedimentação (compactação), as rochas sedimentares. No decorrer desse processo, as elevações primitivas (pré-cambrianas) sofreram enorme desgaste pela ação dos agentes externos, sendo gradativamente rebaixadas. Hoje, apresentam altitudes modestas e formas arredondadas pela intensa erosão, constituindo as serras conhecidas no Brasil como serras do Mar, da Mantiqueira, do Espinhaço, de Parima, Pacaraíma, Tumucumaque, etc, e, em outros países, os Montes Apalaches (EUA), os Alpes Escandinavos (Suécia e Noruega), os Montes Urais (Rússia), etc. Os escudos cristalinos ou maciços antigos apresentam disponibilidade de minerais metálicos (ferro, manganês, cobre), sendo por isso, bastante explorados economicamente.

Nos dobramentos terciários podem haver qualquer tipo de minério. O carvão mineral e o petróleo são comumente encontrados nas bacias sedimentares. Já os dobramentos modernos são os grandes alinhamentos montanhosos que se formaram no contato entre as placas tectônicas em virtude do seu deslocamento a partir do período Terciário da era Cenozóica, como os Alpes (sistema de cordilheiras na Europa que ocupa parte da Áustria, Eslovênia, Itália, Suíça, Liechtenstein, Alemanha e França), os Andes (a oeste da América do Sul), o Himalaia (norte do subcontinente indiano), e as Rochosas.

Biosfera


A Terra é o único local onde se sabe existir vida. O conjunto de sistemas vivos (compostos pelos seres e pelo ambiente) do planeta é por vezes chamado de biosfera. A biosfera provavelmente apareceu há 3,5 bilhões de anos. Divide-se em biomas, habitados por fauna e flora peculiares. Nas áreas continentais os biomas são separados primariamente pela latitude (e indiretamente, pelo clima). Os biomas localizados nas áreas do pólo norte e do pólo sul são pobres em plantas e animais, enquanto que na linha do Equador encontram-se os biomas mais ricos. O estado da biosfera é fundamentalmente o estudo do seres vivos e sua distribuição pela superfície terrestre. A biosfera contém inúmeros ecossistemas (conjunto formado pelos animais e vegetais em harmonia com os outros elementos naturais).

Atmosfera


A Terra tem uma atmosfera relativamente fina, composta por 78% de nitrogênio, 21% de oxigênio e 1% de argônio, mais traços de outros gases incluindo dióxido de carbono e água. A atmosfera age como uma zona intermediária entre o espaço e a Terra. Suas camadas, troposfera, estratosfera, mesosfera, termosfera e exosfera, têm dimensões variáveis ao redor do planeta e de acordo com a estação do ano.

Geografia

A área total da Terra é de aproximadamente 510 milhões de km², dos quais 149 milhões são de terras firmes e 361 milhões são de água.
As linhas costeiras (litorais) da Terra somam cerca de 356 milhões de km.

Hidrosfera


A Terra é o único planeta do Sistema Solar que contém uma superfície com água. A água cobre 71% da Terra (sendo que disso 97% é água do mar e 3% é água doce mas grande parte destes 3% encontram-se nos calotes polares e nos lençóis freáticos). A água proporciona, através de 5 oceanos, a divisão dos 7 continentes. Fatores que combinaram-se para fazer da Terra um planeta líquido são: órbita solar, vulcanismo, gravidade, efeito estufa, campo magnético e a presença de uma atmosfera rica em oxigênio.

A Terra no Sistema Solar

O movimento de rotação da Terra em torno de seu eixo dura 23 horas, 56 minutos e 4,09 segundos, o que equivale a um dia sideral. Nesse período a Terra completa uma volta em torno de um eixo que une o Pólo Sul ao Pólo Norte. Já o movimento de translação da Terra, efetuado ao redor do Sol, leva 365 dias e 6 horas solares médios - o que equivale a um ano sideral. A Terra tem um satélite natural, a Lua, que completa uma volta em torno do planeta a cada 27,3 dias.

O plano de órbita da Terra e seu plano axial não são necessariamente alinhados: o eixo do planeta é inclinado por cerca de 23 graus e 30 minutos em relação ao um plano perpendicular à linha Terra-Sol. Essa inclinação é responsável pelas estações do ano. Já o plano Terra-Lua é inclinado por cerca de 5 graus em relação ao plano Terra-Sol - se não fosse, haveria um eclipse a cada mês.

A esfera de influência gravitational (esfera da Hill) da Terra tem raio de aproximadamente 1,5 Gm, dentro do qual a Lua orbita confortavelmente.

Note que, como uma rotação da Terra em torno de seu eixo dura menos que um dia médio solar (23h 56m 4,09 s= 0,99727*24h), o movimento de translação da Terra, efetuado ao redor do Sol, corresponde a 366,2564 rotações (365,2564/0,99727). Ou seja, embora um ano tenha aproximadamente 365 dias, a Terra efectua 366 rotações num ano, por causa dos graus extra que tem que fazer cada dia, entre dois «meio-dia solares».
Órbita da Terra (animação). Note que a excentricidade da órbita, que é quase circular, está muito exagerada, por razões de ordem estética e para frisar essa mesma excentricidade.
Órbita da Terra (animação). Note que a excentricidade da órbita, que é quase circular, está muito exagerada, por razões de ordem estética e para frisar essa mesma excentricidade.

Como a Terra está em movimento em volta do Sol, não basta uma rotação completa para o Sol voltar a ficar no zénite. Como a Terra mudou de posição e «avançou» uns 2500 milhares de quilómetros o planeta ainda tem que rodar alguns graus extra para que o Sol apareça de novo na mesma posição.

Como a velocidade da Terra é maior quando ela está mais próxima do Sol (periélio) e menor quando ela está mais distante (afélio), o número de graus extra necessários é maior no Inverno (Hemisfério Norte) do que no Verão (Hemisfério Norte). Ou seja, os dias solares são mais compridos no Inverno (do Hemisfério Norte, Verão, no Hemisfério Sul). No Inverno, o dia solar é superior a 24 horas (o dia médio solar) e, no verão, inferior a 24 horas.
 

Grunge

GF Ouro
Membro Inactivo
Entrou
Ago 29, 2007
Mensagens
5,124
Gostos Recebidos
0
Marte

marte.jpg


Marte é o quarto planeta a contar do Sol e é o último dos quatro planetas telúricos no sistema solar, situando-se entre a Terra e a cintura de asteróides a 1,5 UA do Sol (ou seja, a uma vez e meia a distância da Terra ao Sol). De noite, aparece como uma estrela vermelha, razão por que os antigos romanos lhe deram o nome de Marte, o deus da guerra. Os chineses, coreanos e japoneses chamam-lhe "Estrela de Fogo", baseando-se nos cinco elementos da filosofia tradicional oriental. Executa uma volta em torno do Sol em 687 dias terrestres (quase dois anos).

Marte é um planeta com algumas afinidades com a Terra: tem um dia com uma duração muito próxima do dia terrestre e o mesmo número de estações.

Marte tem calotas polares que contêm água e dióxido de carbono gelados, a maior montanha do sistema solar - o Olympus Mons, um desfiladeiro imenso, planícies, antigos leitos de rios secos, tendo sido recentemente descoberto um lago gelado. Os primeiros observadores modernos interpretaram aspectos da morfologia superficial de Marte de forma ilusória, que contribuíram para conferir ao planeta um estatuto quase mítico : primeiro foram os canais; depois as pirâmides, o rosto humano esculpido, e a região de Hellas no sul de Marte que parecia que, sazonalmente, se enchia de vegetação, o que levou a imaginar a existência de marcianos com uma civilização desenvolvida. Hoje sabemos que poderá ter existido água abundante em Marte e que formas de vida primitiva podem, de facto, ter surgido.

Mitologia


Marte é um planeta conhecido desde a antiguidade e na mitologia helénica representa Ares, o deus da fúria e da guerra, devido à sua coloração avermelhada. O povo romano que herdou muito da sua cultura da Grécia chamou-lhe de Marte, nome por que hoje conhecemos quer o deus quer o planeta.

Outras civilizações observavam também Marte no céu nocturno: os egípcios conheciam-no como "Her Deschel" ou "O Vermelho". Já para os babilónios, Marte era "Nergal" ou "A Estrela da Morte".

História de observação e exploração

Marte é conhecido desde a antiguidade, e destaca-se no céu pelo seu aspecto avermelhado; devido a isso é conhecido como o "O Planeta Vermelho". Os babilónios já faziam observações cuidadosas do que eles chamavam de Nergal (A Estrela da Morte), mas tudo o que viam tinham propósitos exclusivamente religiosos. Os gregos são os primeiros a fazer observações mais racionais e identificaram Marte como sendo uma das cinco estrelas errantes (planetas) do céu. O astrónomo grego Hiparco (160 - 125 a.C.) verificou que Marte nem sempre se movia de oeste para leste. Ocasionalmente, o planeta invertia o seu caminho no céu para a direcção contrária; para depois voltar a deslocar-se normalmente; esta característica tornava a procura do planeta muito difícil e era contrária à teoria vigente de que a Terra era o centro do universo.

As observações do movimento aparente de Marte feitas por Tycho Brahe (1546 - 1601) permitiram a seu discípulo Johannes Kepler descobrir as leis dos movimentos dos planetas, que deram suporte à teoria heliocêntrica de Copérnico.

Em 1655, Christiaan Huygens faz experimentações com novos óculos e nesse mesmo ano constrói um bom telescópio com uma ampliação de 50x. Em 1659, quando Marte se encontrava em oposição, Huygens decide ver Marte com o seu telescópio e distingue manchas no disco do planeta e no seu esboço faz uma marca em forma de V, o que é hoje identificado como Syrtis Major. Huygens notou que a marca se movia, e assim calculou a rotação do planeta, anotando no seu diário: «A rotação de Marte, como a da Terra, parece ter um período de 24 horas.»

O ano de 1877 foi um ano-chave para os estudos do planeta, já que Marte se encontrava numa oposição muito mais próxima da Terra. E assim, o astrónomo norte-americano Asaph Hall descobre os satélites naturais de Marte: Fobos e Deimos; e o italiano Giovanni Schiaparelli dedicou-se a cartografar cuidadosamente o planeta; com efeito, ainda hoje se usa a nomenclatura criada por ele para os nomes das regiões marcianas: Syrtis Major, Noachis, Solis Lacus, entre outros nomes. Já a nomenclatura das observações de Marte na Madeira em Agosto e Setembro de 1877 por Nathaniel Green não prevaleceram. Essa nomenclatura tinha nomes mais antigos e honrava personalidades da astronomia.

Schiaparelli também acreditou que observava umas linhas finas em Marte, a que baptizou de canali (canais). Em inglês a palavra foi traduzida como canals em vez de channels, o que implicava algo de artificial, o que despertou a mente do aristocrata norte-americano Percival Lowell que se dedicou a especular sobre vida inteligente em Marte. Lowell estava tão entusiasmado que montou o seu próprio observatório. As suas observações convenceram-no que Marte era um planeta que estava a secar, e que existia uma antiga civilização marciana que construiu esses canais para drenar as calotas polares e enviar água para as cidades sedentas.

Essa ideia de uma civilização marciana passou para a imaginação popular. H.G. Wells escreve A Guerra dos Mundos em 1898 em que a Terra seria invadida por marcianos que usavam armas poderosas. Em 1938, Orson Welles fez uma adaptação do conto para a rádio o que causou o pânico generalizado e que levou a que algumas pessoas fugissem e outras afirmarem que sentiam o cheiro do gás venenoso lançado pelos marcianos ou que viam luzes ao longe, da luta dos marcianos para se apoderarem da Terra.

Mais tarde, provou-se que a grande maioria dos canais eram apenas uma ilusão de óptica. Na década de 1950, já quase ninguém acreditava em vida inteligente em Marte, mas muitos estavam convencidos da existência de musgos e líquenes primitivos.

Em plena Guerra Fria, em que as potências da época se envolveram numa corrida espacial, os soviéticos são os primeiros a tentar enviar sondas a Marte para descobrir o que se passava no planeta, mas nenhuma delas teve sucesso. Os Americanos foram logo de seguida e o sucesso chegou com a segunda tentativa através da sonda Mariner 4 que, em 1965, orbita Marte e consegue tirar a primeira fotografia próxima do planeta, mas de muito fraca qualidade. Os soviéticos só conseguiram fazer pousar uma sonda em Marte em 1974.

A 20 de Julho de 1976, a sonda norte-americana Viking I pousa em Chryse Planitia, uma planície circular na região equatorial norte de Marte, perto de Tharsis, e tira a primeira fotografia da superfície. A sonda gémea, a Viking II pousa a 3 de Setembro do mesmo ano em Utopia Planitia. Estas duas sondas operaram durante anos, até que as suas baterias falhassem. Com esta missão, as ideias de uma civilização marciana e de vida primitiva ao nível de musgos foram postas de lado, mas dúvidas quanto a existência de bactérias continuaram a persistir.

A sonda Mars Pathfinder chega a Marte a 4 de Julho de 1997 e pousa em Chryse Planitia, na região de Ares Vallis, libertando um pequeno veículo robô que explorou e investigou diferentes rochas, verificando a origem vulcânica de uma ou a erosão causada pelo vento ou pela água de outras. Entretanto, a sonda de pouso enviou mais de 16 500 imagens e fez 8,5 milhões de medições à pressão atmosférica, temperatura e velocidade do vento. A 11 de Setembro do mesmo ano, chega a sonda Mars Global Surveyor, e a sua missão consistiu em fotografar o planeta com uma resolução muito maior que as missões anteriores conseguiriam fazer.

A Agência Espacial Europeia (ESA) entra na corrida enviando a sonda orbital Mars Express ao planeta vermelho. Esta chega a Marte no final de 2003, e lança um robô para explorar a superfície, mas o dispositivo não deu sinais de funcionamento após a chegada ao planeta vermelho. Já a sonda orbital tem sido marcada pelo sucesso, especialmente no que toca às descobertas envolvendo a água. De destacar a descoberta, em meados de 2005, do primeiro lago gelado encontrado no planeta.

Outras missões mais recentes bem sucedidas são as dos robôs de exploração "Spirit" (Espírito) e seu irmão gémeo "Opportunity" (Oportunidade) que exploram Marte desde Janeiro de 2004.

O robô Spirit pousou na grande e intrigante cratera Gusev. O robô Opportunity pousou em Meridiani Planum, no pólo norte. Apesar de Meridiani Planum ser uma planície, sem campos de rochas, o robô Opportunity rolou para a pequena cratera Eagle com apenas 20 metros de diâmetro. A parede da cratera tinha uma formação rochosa intrigante com rochas colocadas em camadas, que podem ter várias origens desde depósitos de cinza vulcânica a sedimentos causados pelo vento ou água. Depois de pesquisas feitas pelo robô a sedimentos, a NASA chega à conclusão que a Opportunity pousou numa antiga costa de um antigo mar salgado em Marte.

Todas estas missões foram feitas por máquinas e não pelo homem. Várias pessoas já partiram em defesa das missões tripuladas a Marte como o próximo passo lógico. Por causa da distância entre Marte e a Terra, a missão traria mais riscos e seria mais cara que as viagens à Lua, apesar de muitos acreditarem serem bem mais proveitosas que o envio de robôs. Seriam necessários mantimentos e combustível para uma viagem de ida e volta de 2 a 3 anos. Uma proposta chamada «Mars Direct» é tida como o plano mais prático e menos dispendioso para uma missão a Marte com seres humanos.

A Agência Espacial Europeia tem como objectivo o envio de uma missão humana a Marte no ano 2030, como parte do seu Programa Aurora. Já os norte-americanos pretendem voltar à Lua em 2015, abrindo caminho para missões a Marte no futuro.

Nos últimos séculos, alguns cientistas acreditavam e acreditam que Marte é um forte candidato para a terraformação e colonização humana. A criação de uma colónia em Marte faria reduzir os custos da viagem e dificuldades técnicas da exploração humanas no planeta. Para terraformar Marte ter-se-ia que construir a atmosfera e aquecê-la. Uma atmosfera mais grossa de dióxido de carbono e outros gases de efeito-estufa iria aprisionar a radiação solar e ambos os processos construir-se-iam um ao outro. As fábricas que na Terra produzem gases nocivos ao planeta, em Marte teriam um efeito de terraformação, caso fossem construídas grandes fábricas. Além disso seriam necessárias plantas e outros organismos geneticamente alterados de forma a diversificar os gases da atmosfera.

Luas

Marte tem dois pequenos satélites naturais: Fobos e Deimos, ambos deformados, possivelmente asteróides carbonácios capturados pelo planeta. Foram descobertos por Asaph Hall em Agosto de 1877, com o impulso da sua esposa. Os nomes provêm de dois filhos do deus Ares (Marte na mitologia romana): Fobos (Φόβος, medo em grego) e Deimos (Δείμος, do grego pânico e terror).

Ambos os satélites estão ligados pela força gravítica apontando sempre a mesma face. Já que Fobos é mais veloz a orbitar Marte que o próprio planeta a girar, a força da gravidade irá diminuir o seu raio orbital, que já é o mais curto conhecido no sistema solar, o que poderá levar à fragmentação de Fobos.

Vistos de Marte, Fobos tem um diâmetro ângular de 12', enquanto que Deimos tem um diâmetro ângular de 2'. O Sol, por contraste, tem cerca de 21'. Nas noites marcianas, Fobos não mostraria nenhuma eficácia na iluminação, apareceria apenas tão brilhante como Vénus se mostra à Terra, devido à superfície bastante escura do pequeno satélite. Mas num dia normal em Marte, ver-se-ia Fobos a passear pelo céu três vezes por dia, surgindo a Oeste e pondo-se a Leste.

Já Marte visto a partir de Fobos constituiria uma imagem impressionante, Marte sustenderia um ângulo de 43° e preencheria quase metade do céu desde o horizonte ao zénite.
 

Grunge

GF Ouro
Membro Inactivo
Entrou
Ago 29, 2007
Mensagens
5,124
Gostos Recebidos
0
Jupiter

Jupiter.jpg


Júpiter é o maior planeta do sistema solar, e o quinto a partir do Sol. É conhecido pela Grande Mancha Vermelha e pelos seus 4 grandes satélites: Ganímedes, Europa, Io e Calisto. Júpiter é um dos planetas do sistema solar que têm anéis.

Panorâmica geral


Júpiter tem 2,5 vezes mais massa do que todos os outros planetas tomados em conjunto, de tal forma que o seu baricentro com o Sol se localiza acima da superfície solar (a 1,068 raios solares do centro do Sol). Tem 318 vezes mais massa do que a Terra, um diâmetro 11 vezes superior ao terrestre e um volume 1300 vezes maior que o da Terra. Foi apelidado por muitos de "estrela falhada". Mesmo assim, e por mais impressionante que Júpiter seja, já se descobriram vários planetas extra-solares com massas muito maiores. Por outro lado, pensa-se que Júpiter tenha um diâmetro tão grande como é possível a um planeta com a sua composição, visto que adicionar-lhe mais massa teria apenas como resultado aumentar a compressão gravitacional. Não existe uma definição inequívoca do que distingue um planeta grande e maciço, como Júpiter, de uma anã castanha, mas para que fosse uma estrela Júpiter teria de ter cerca de setenta vezes mais massa do que a que tem.

Júpiter tem também a rotação mais rápida de todos os planetas do sistema solar, o que resulta num achatamento facilmente visível através de um telescópio. A sua característica mais conhecida é provavelmente a Grande Mancha Vermelha, uma tempestade com ventos de até 500 km/h. É quase duas vezes maior que a Terra, e está ativa há cerca de 300 anos. O planeta está perpetuamente coberto por camadas de nuvens. Novas fotos tiradas pelo telescópio Hubble mostram uma nova mancha vermelha surgindo próxima à Grande Mancha Vermelha.

Júpiter costuma ser o quarto corpo mais brilhante no céu (depois do Sol, da Lua e de Vênus; por vezes, Marte aparece mais brilhante do que Júpiter, enquanto outras vezes Júpiter brilha mais do que Vênus). O planeta é conhecido desde os tempos antigos. A descoberta de Galileu Galilei em 1610 de quatro grandes satélites naturais gravitando ao redor de Júpiter, hoje chamados satélites galileanos (Io, Europa, Ganímedes e Calisto) foi a primeira descoberta de movimentos de corpos no espaço aparentemente não tendo a Terra como centro. Este foi o maior ponto a favor da teoria heliocentrista do movimento dos planetas, de Nicolau Copérnico; os discursos de Galileu em favor das teorias de Copérnico fizeram com que fosse julgado pela Inquisição.

Composição do planeta

Júpiter é composto de um centro rochoso relativamente pequeno, imerso em hidrogênio metálico, o qual é circundado por uma camada de hidrogênio líquido, recoberta por sua vez de gás hidrogênio. Não há uma fronteira clara entre essas camadas de diferentes densidades de hidrogênio; as condições variam lentamente do gás até a camada sólida à medida que se aprofunda.

Atmosfera


A atmosfera joviana é composta de aproximadamente 86% de hidrogénio, e 14% de hélio (pelo número atômico desses átomos, a composição atmosférica fica em torno de 76%/24% se considerarmos as massas, uma vez que o hidrogénio é mais leve que o hélio; com cerca de 1% da massa composta por outras substâncias menos significativas — o interior do planeta contém mais substâncias densas, sendo a composição por volta de 71%/24%/5%). A atmosfera apresenta ainda traços de metano, vapor de água, amônia e substâncias sólidas. Há também quantidades desprezíveis de gás carbônico, etano, gás sulfídrico, neon, oxigênio e enxofre. Essa composição atmosférica é muito similar à composição da nebulosa solar. O planeta Saturno tem composiçao semelhante, mas Urano e Neptuno têm muito menos hidrogénio e hélio. A rotação da atmosfera superior de Júpiter não é constante em todos os seus pontos, um efeito notado primeiramente por Giovanni Domenico Cassini em 1690. A rotação da região polar da atmosfera do planeta é aproximadamente 5 minutos mais demorada do que na região equatorial da atmosfera. Além disso, grupos de nuvens em diferentes latitudes deslocam-se em diferentes direções, seguindo as correntes de vento. A interação desses padrões conflitantes de circulação causa tempestades e turbulência. A velocidade dos ventos pode atingir até 600 km/h. A camada mais alta da atmosfera contém cristais de amônia congelada.

Anéis planetários

Júpiter tem um sistema de anéis planetários composto por partículas de poeira cósmica, embora não tão evidente como Saturno.

Campo magnético


Júpiter tem um campo magnético muito forte. Se ele pudesse ser enxergado, a imagem dele visto da Terra teria o tamanho cinco vezes maior do que o disco da Lua cheia, apesar da grande distância. A força desse campo atrai um grande fluxo de partículas de radiação nos cinturões de radiação do planeta, produzindo também um forte fluxo de gás em forma de tubo associado com o satélite Io.

Exploração de Júpiter

Júpiter é conhecido desde tempos remotos, visível a olho nu no céu da noite. Em 1610 Galileo Galilei descobriu as quatro maiores luas de Júpiter usando um telescópio, a primeira observação de luas que não fossem a da Terra.

Algumas sondas visitaram Júpiter, todas elas de origem estado-unidense. A Pioneer 10 voou por Júpiter em Dezembro de 1973, seguida pela Pioneer 11 exatamente um ano depois. A Voyager 1 voou por lá em março de 1979, seguida pela Voyager 2 em Julho do mesmo ano. A sonda Galileo ficou em órbita em Júpiter em 1995, enviando uma subsonda na atmosfera de Júpiter conduzindo multiplos vôos por todas as luas de Galileo. A sonda Galileo também presenciou o impacto do Cometa Shoemaker-Levy 9 em Júpiter, enquanto ele se aproximava do planeta em 1994, dando uma vantagem única para este evento espetacular.

Depois da descoberta de um oceano líquido na lua de Júpiter Europa no final da sonda Galileo, que saiu de órbita em Setembro de 2003, a NASA está planejando uma missão dedicada para as luas congeladas. Espera-se que JIMO, o Orbitador das Luas congeladas de Júpiter (Jupiter Icy Moons Orbiter), seja lançado depois de 2012.

Satélites de Júpiter


Júpiter tem inúmeros satélites naturais em torno de si. Em 15 de Maio de 2003, Scott Sheppard publicou no jornal Nature a descoberta de 23 novos satélites de Júpiter. Isso aumentou o total de satélites conhecidos para 61. Hoje, Júpiter tem 63 satélites conhecidos.
 

Grunge

GF Ouro
Membro Inactivo
Entrou
Ago 29, 2007
Mensagens
5,124
Gostos Recebidos
0
Saturno

saturno_intro.jpg


Saturno é o sexto planeta do Sistema Solar com uma órbita localizada entre as órbitas de Júpiter e Urano. É o segundo maior, após Júpiter dos planetas gigantes do sistema solar, porém o de menor densidade, tanto que se existisse um oceano grande o bastante, Saturno flutuaria nele. Seu aspecto mais característico é seu brilhante sistema de anéis, o único visível da Terra. Seu nome provém do deus romano Saturno. Faz parte dos denominados planetas exteriores.

Saturno é um planeta gasoso, principalmente composto de hidrogênio, com uma pequena proporção de hélio e outros elementos. Seu interior consiste de um pequeno núcleo rochoso e gelo, cercado por uma espessa camada de hidrogênio metálico e uma camada externa de gases. A atmosfera externa tem uma aparência suave, embora a velocidade do vento em Saturno possa chegar a 1.800 km/h, significativamente tão rápido como os de Júpiter. Saturno tem um campo magnético planetário intermediário entre as forças da Terra e o poderoso campo ao redor de Júpiter.

Antes da invenção do telescópio, Saturno era o mais distante dos planetas conhecidos. A olho nu não parecia ser luminoso. O primeiro ao observar seus anéis foi Galileu em 1610, porém devido a baixa inclinação de seus anéis e a baixa resolução de seu telescópio lhe fizeram pensar a princípio que se tratava de grandes luas. Christiaan Huygens com melhores meios de observação pode em 1659 visualizar com clareza os anéis. James Clerk Maxwell em 1859 demonstrou matematicamente que os anéis não poderiam ser um único objeto sólido, sendo que deveriam ser um agrupamento de milhões de partículas de menor tamanho.

O movimento de rotação em volta do seu eixo demora cerca de 10,5 horas, e cada revolução ao redor do Sol leva 30 anos terrestres.

Tem um número elevado de satélites, 60 descobertos até então, dos quais 35 possuem nomes, e está cercado por um complexo de anéis concêntricos, composto por dezenas de anéis individuais separados por intervalos, estando o mais exterior destes situado a 138 000 km do centro do planeta geralmente compostos por restos de meteoros e cristais de gelo. Alguns deles têm o tamanho de uma casa.

Saturno é um esferóide oblato (achatado nos pólos) - seus diâmetros polar e equatorial variam por quase 10% (120.536 km contra 108.728 km). Este é o resultado de sua rápida rotação e estado fluido. Os outros planetas gasosos também são oblatos, mas em um menor grau. Saturno é o único do sistema solar que é menos denso que a água, com uma densidade específica de 0.69. Esta é uma média; a atmosfera superior de Saturno é menos densa e seu núcleo consideravelmente mais denso que a água.

Origem do nome de Saturno


Devido a sua posição orbital mais distante que Júpiter os antigos romanos o outorgaram o nome do pai de Júpiter ao planeta Saturno. Na mitologia romana, Saturno era equivalente do antigo titán grego Cronos, deus do tempo. Cronos era filho de Urano e Gaia e governava o mundo dos deuses e dos homens devorando seus filhos ao nascerem para que não o destronassem. Zeus, conseguiu se esquivar deste destino e derrotou seu pai convertendo-se no deus supremo.

Os gregos e romanos, herdaram dos sumérios seus conhecimentos do céu, haviam estabelecido em sete o número de astros que se moviam no firmamento: o Sol, a Lua, e os planetas Mercúrio, Vénus, Marte, Júpiter e Saturno, as estrelas errantes que orbitavam em torno da Terra, centro do Universo. Dos cinco planetas, Saturno era o de movimento mais lento, levando uns trinta anos (29,457 anos) para completar sua órbita, quase o triplo que Júpiter (11,862 anos). Em relação a Mercúrio, Vénus e Marte a diferença é muito maior. Saturno se destacava por sua lentidão. Se Júpiter era Zeus, Saturno teria que ser Cronos, seu pai ancião, que passo a passo perambulava entre as estrelas.

Por outro lado, se conheciam sete metais: ouro, prata, mercúrio, estanho, ferro, cobre e chumbo. Se o elemento mercúrio, fluido e móvel, era o metal de Hermes, o mensageiro dos deuses, porque não fazer do chumbo o metal de Saturno, lento e pesado?.

Características


Saturno é um planeta visivelmente achatado em seus pólos formando a figura de um esfera oval. Os diâmetros equatorial e polar são respectivamente 120.536 e 108.728 km. Este efeito é produzido pela rápida rotação do planeta, sua natureza liquida e sua relativamente baixa gravidade. Os outros planetas gigantes são também ovalados, porém não em tamanha proporção. Saturno possui uma densidade específica de 690 kg/m³ sendo o único planeta do Sistema Solar com uma densidade inferior a da água (1000 kg/m³). Se existisse um oceano grande o bastante, Saturno flutuaria nele. O planeta é formado por 90% de hidrogênio e 5% de hélio. O volume do planeta é suficiente para conter 740 vezes a Terra, porém sua massa é apenas 95 vezes a terrestre, devido a sua mencionada densidade média relativa.

O período de rotação de Saturno é incerto, uma vez que não possui superfície e sua atmosfera gira com um período distinto em cada latitude. Desde a época da Voyager se considerava que o período de rotação de Saturno, baseando-se na periodicidade de sinais de rádio emitidas por ele, era de 10 h 39 min 22,4 s (810,8°/dia). As missões espaciais Ulysses e Cassini tem mostrado que este período de emissão em rádio varia no tempo, sendo atualmente: 10 h 45 m 45 s (± 36 s). As causas desta mudanças no período de rotação não são conhecidas e se considera que ambos períodos são uma aproximação do período de rotação do seu interior.

Estrutura interna


O interior do planeta é semelhante ao de Júpiter, com um núcleo sólido em seu interior. Sobre ele se estende uma extensa camada de hidrogeno líquido e metálico (devido ao efeitos das elevadas pressões e temperaturas). A superfície de 30.000 km do planeta é formada por uma extensa atmosfera de hidrogénio e hélio. O interior do planeta é formado por materiais gelados durante sua formação ou que se encontra em estado líquido nas condições de pressão e temperatura próximas ao núcleo. No núcleo pode-se encontrar temperaturas em torno a 12.000 K (aproximadamente o dobro da temperatura na superfície do Sol). Porém são semelhantes a Júpiter e Netuno, Saturno irradia mais calor a superfície do que recebe do Sol. A maior parte desta energia é produzida por uma lenta contração do planeta que libera a energia gravitacional produzida durante a compressão. Este mecanismo se denomina mecanismo de Kelvin-Helmholtz. No entanto, não parece ser o único responsável pela fonte de calor interna de Saturno. Provavelmente o calor extra gerado se produz em uma separação de fases entre o hidrogeno e o hélio atmosférico que se separam na zona inferior da atmosfera, concentrando-se em gotas que precipitam em chuva sobre o interior do planeta liberando energia gravitacional em forma de calor.

Atmosfera


A atmosfera de Saturno tem um padrão de faixas escuras e claras, similar as de Júpiter embora a distinção entre ambas esteja muito mais menos nítida no caso de Saturno. A atmosfera planetária tem ventos fortes, na direção dos paralelos, alterando conforme a latitude e altamente simétricas em ambos os hemisférios apesar do efeito estacionário da inclinação do eixo do planeta. O vento é dominado por uma corrente equatorial intensa e larga no nível da altura das nuvens que chegaram a alcançar velocidades de até 450 m/s na durante a passagem da Voyager.

As nuvens superiores são formadas provavelmente por cristais de amonia. Neles uma névoa uniforme parece estender sobre todo o planeta, produzido por fenômenos fotoquímicos na atmosfera superior (cerca de 10 a mbar). Em uns níveis mais profundos (perto de 10 bar de pressão) a água da atmosfera condensa-se provavelmente em uma camada da nuvem de água que não poderia ter sido observada.

Assim como Júpiter ocasionalmente formam se tempestades da atmosfera de Saturno, algumas poderiam ter sido observadas da terra. Em 1933 foi observado um ponto branco situado na zona equatorial pelo astrônomo W.T. Hay. Era suficientemente grande para ser visível com um refrator de 7 cm, mas não demorou para dissipar-se e desaparecer. Em 1962 começou a desenvolver uma mancha, mas nunca chegou a se destacar. Em 1990 pode ser observada uma gigantesca nuvem branca no equador de Saturno que foi associada a formação de uma grande tempestade. Foram observados pontos similares em fotografias feitas no último século. Em 1994 pode ser observada uma tempestade, com aproximadamente a metade do tamanho que ocorreu em 1990.

As regiões polares apresentam correntes a 78ºN e a 78ºS. As sondas Voyager detectaram nos anos 80 um padrão sextavado na região polar norte que foi observado também pelo telescópio Hubble do durante os anos 90. As imagens as mais recentes obtidas pela sonda Cassini mostraram o vértice polar com detalhe. Saturno é o único planeta conhecido que tem um vértice polar destas características embora os vértices polares sejam comuns nos atmosferas da Terra ou do Vénus.

No caso do hexágono de Saturno os lados têm aproximadamente 13.800 km no comprimento (maior que o diâmetro da terra) e na estrutura com um período idêntico a sua rotação planetária, é uma onda reta que não muda de comprimento e nem estrutura, diferentemente das demais nuvens da atmosfera. Estes formato em polígono, entre dois e seis lados, podem ser simulados em laboratório por meio dos modelos do líquido na rotação da escala.

No contrário do pólo norte, as imagens do pólo sul mostra uma forte corrente, sem a presença de vértices ou formas sextavada persistente.No entanto, a NASA informou em novembro do 2006 que a sonda Cassini tem observado um ciclone no pólo sul, com um centro bem definido_Os únicos centros de furacões definidos tinham sido observados na terra (nem mesmo foi observado dentro da grande mancha vermelha de Júpiter pela sonda Galileo). Esse vértice de aproximadamente 8000 km de diâmetro, poderia ter sido fotografado e ter sido estudado com detalhe grande pela sonda Cassini, sendo ventos moderados de mais de 500 quilômetros por a hora. A atmosfera superior nas regiões polares desenvolve fenômenos de auroras pela interação do campo magnético planetário com o vento solar.

Campo magnético

O campo magnético de Saturno é muito mais fraco de que Júpiter, sua magnetosfera é um terceiro de Júpiter. A magnetosfera de Saturno consiste em um conjunto de cinturões de radiação. Esses cinturões estendem por aproximadamente 2 milhões de quilômetros do centro de Saturno, principalmente, no sentido oposto do Sol, embora o tamanho da magnetosfera varie dependendo da intensidade do vento solar (o fluxo do sol de partículas carregadas). O vento solar e os satélites e o anel de Saturno fornecem as partículas elétricas para o cinturão. O período de rotação em 10 horas, 39 minutos e 25 segundos do interior de Saturno foi medido pela Voyager 1 quando cruzou a magnetosfera, que gira em forma assíncrona com o interior de Saturno. A magnetosfera interage com a ionosfera, a camada superior da atmosfera de Saturno, causando emissões de auroras de radiação ultravioleta.

Nas proximidades da órbita de Titã e estendendo até a órbita de Réia, se encontra uma grande nuvem de átomos do hidrogênio neutro. Como um disco plasma, composto do hidrogênio e possivelmente de íons de oxigênio, estendendo da órbita de Tétis até as proximidades da órbita de Titã. O plasma gira em quase perfeitamente assíncrona com o campo magnético de Saturno.

Órbita

Saturno gira em torno do Sol em uma distância media de 1.418 milhões de quilômetros em uma órbita de excentricidade 0.056, com um afélio a 1.500 milhões quilômetros e o perélio a 1.240 milhões quilômetros. Saturno esteve no perélio em 1974. O período da rotação em torno do sol completa a cada 29 anos e 167 dias, visto que seu Período sinódico se realiza de 378 dias, de modo que , a cada ano a oposição ocorre com quase duas semanas de atraso em relação ao ano anterior. O período da rotação em seu eixo é curto, de 10 horas, 14 minutos, com algumas variações entre o equador e os pólos.

Os elementos orbitais de Saturno são alterados em uma escala de 900 anos por uma ressonância orbital do tipo de 5:2 com o planeta Júpiter, batizado pelos astrônomos franceses do século XVIII como a grand inégalité (grande desigualdade), Júpiter completa 5 retornos para cada 2 de Saturno. Os planetas não estão em uma ressonância perfeita, mas são suficientemente próximo de modo que os distúrbios de suas órbitas sejam apreciáveis.

Anéis de Saturno

Os anéis de Saturno são constituídos essencialmente por uma mistura de gelo, poeiras e material rochoso. Embora possam atingir algumas centenas de milhares de quilómetros de diâmetro, não ultrapassam 1,5 km de espessura. A origem dos anéis é desconhecida. Originalmente pensou-se que teriam tido origem na formação dos planetas à cerca de 4 bilhões de anos, mas estudos recentes apontam para que sejam mais novos, tendo apenas algumas centenas de milhões de anos. Os anéis podem mudar de cor.

Satélites

Saturno tem um grande número de satélites ou luas, o maior que todos os demais planetas. Os seus maiores satélites, conhecidos antes do começo da exploração espacial, são: Mimas, Encélado, Tétis, Dione, Réia, Titã, Hiperion, Jápeto e Febe. Encélado e Titã são mundos especialmente interessantes para os cientistas planetários, primeiramente pela existência de água líquida a pouca profundidade de sua superfície, com a emissão de vapor da água geyser. Em segundo porque possui uma atmosfera rica do metano, bem similar a da terra primitiva.

O sistema de satélites maiores de Saturno, que vai até Jápeto, se espalha por cerca de 3,5 milhões de km, enquanto Febe, um satélite menor, faz parte de um sistema de satélites irregulares externos e se localizam a cerca de 12,9 milhões de km do planeta.

Exploração espacial de Saturno

Visto da terra, Saturno aparece como um objeto amarelado, um dos mais brilhantes no céu noturno. Observado através de telescópio, o anel A e o B são vistos facilmente, no entanto, os anéis D e E são vistos somente em ótimas condições atmosféricas. Com telescópios de grande sensibilidade situados na Terra pode distinguir a névoa gasosa que envolve Saturno, dos pálidos cinturões e das estruturas de faixas paralelas ao equador.

Três naves espaciais norte-americanas ampliaram enormemente o conhecimento do sistema de Saturno: a sonda Pionner 11, a Voyager 1 e a 2, que sobrevoou o planeta em setembro 1979, novembro de 1980 e em agosto de 1981, respectivamente. Estas naves espaciais levaram câmeras e instrumentos para analisar as intensidades e as polarizações das radiações nas regiões visíveis, ultravioletas, infravermelhas e do spectrum eletromagnético. Foram equipados também com os instrumentos para o estudo dos campos magnéticos e para a detecção de partículas carregadas e grãos da poeira interplanetária.

Em outubro de 1997 foi lançada a sonda Cassini, com destino a Saturno, que incluiu também a sonda Huygens para explorar Titã, uma das luas do planeta. Sendo um projeto de grande interessar da NASA em colaboração com a Agência Espacial Européia e a Agência Espacial Italiana. Após uma viagem de quase sete anos, está previsto que a Cassini recolha dados em Saturno e em seus satélites durante quatro anos. Em outubro de 2002 a sonda obteve sua primeira fotografia do planeta, tomada a uma distância de 285 milhões quilômetros, na qual aparece também Titã. Em junho de 2004 a Cassini voou sobre Febe, outro satélite de Saturno (o mais afastado), obtendo imagens espetaculares de sua superfície, repleta de crateras. Em julho do mesmo ano, a sonda entrou na órbita de Saturno. Em janeiro de 2005 a sonda Huygens cruzou a atmosfera de Titã e alcançou sua superfície, enviando dados para terra e imagens do interesse satélite.

Datas importantes na observação e na exploração de Saturno


* 1610 Galileo observa através de seu telescópio o anel de Saturno.
* 1655 Titã foi descoberto pelo astrônomo holandês Christiaan Huygens.
* 1659 Christiaan Huygens observa com maior claridade os anéis de Saturno e descreve sua verdadeira aparência.
* 1789 As luas Mimas e Encélado são descobertas por William Herschel.
* 1980 Acelerada pelo campo gravitacional de Júpiter, a sonda Voyager 1 alcança Saturno em 12 de novembro a uma distancia de 124.200 quilômetros. Nesta ocasião descobriu estruturas complexas no sistema de anéis do planeta e obtve dados da atmosfera de Saturno e sua maior lua, Titã a uma distancia de menos de 6500 quilômetros.
* 1982 A sonda Voyager 2 aproxima de Saturno.
* 2004 Cassini/Huygens alcança Saturno. Transformando-se no primeiro veículo espacial a orbitar o planeta distante e em aproxima-se de seus anéis. A missão de espaço está programa para concluir no final do ano 2009.

Observação de Saturno

Saturno é um planeta fácil de observar, porque é visível no céu na maioria das vezes e seu anel pode ser observado com qualquer telescópio. Pode ser observado melhor quando o planeta estiver próximo ou em oposição, isso é, a posição de um planeta quando está posicionada num ângulo de 180°, neste caso ele aparece oposto ao Sol no céu. Na oposição de 13 de janeiro de 2005, Saturno pode ser visto de uma forma que não se iguala até 2031, devido ao sentido muito favorável dos seus anéis em relação a Terra.

Saturno é observado simplesmente no céu noturno como um ponto luminoso brilhante (que não pisca) e amarelado, cujo brilho varia normalmente entre a magnitude de +1 e o 0. Leva aproximadamente 29 anos e meio para completar sua órbita em relação às estrelas da constelação que pertencem ao zodíaco. Com apoio ótico, como binóculos grandes ou um telescópio, é necessário uma ampliação da imagem em pelo menos 20 vezes de maneira que a maioria das pessoas possa distinguir claramente os anéis de Saturno.

Saturno nas diversas culturas

Na astrologia Hindu, são conhecidos nove planetas, como Navagraha. Conhecem Saturno como o San ou Shan, juiz entre todos os planetas e determina a trajetória de cada um, de acordo com seus próprios feitos, maus ou bons.

A cultura chinesa e Japão designa Saturno como a estrela da terra, dentro da cultura oriental tradicional de usar cinco elementos classificar os elementos naturais.

No hebraico, chamam Saturno de Shabbathai. Seu anjo é Cassiel. Sua inteligência, ou o espírito benéfico, são Agiel (layga), seu espírito (o aspecto mais escuro) é Zazel (lzaz). Para ver: Cabala.

Em Turco e Malayo, seu nome é Zuhal, removido do árabe زحل.

Saturno foi conhecido também como Φαίνων pelos Gregos.
 

Grunge

GF Ouro
Membro Inactivo
Entrou
Ago 29, 2007
Mensagens
5,124
Gostos Recebidos
0
Urano

urano.jpg


Urano (também referido como Úrano) é o sétimo planeta do Sistema Solar, situado entre Saturno e Neptuno. A característica mais notável de Urano é a estranha inclinação do seu eixo de rotação, quase noventa graus em relação com o plano de sua órbita; essa inclinação não é somente do planeta, mas também de seus anéis, satélites e campo magnético. Urano tem a superfície a mais uniforme de todos os planetas por sua característica cor azul-esverdeada, produzida pela combinação de gases em sua atmosfera, e tem anéis que não podem ser vistos a olho nu; além disso, tem um anel azul, que é uma peculiaridade planetária. Urano é um de poucos planetas que têm um movimento de rotação retrógrado, similar ao de Vénus.

Tem 27 satélites ao seu redor e um fino anel de poeira.


O seu diâmetro equatorial é de cerca de 51.118 km, isto é, quatro vezes superior ao da Terra. Urano situa-se a (o semi-eixo maior de sua órbita mede) cerca de 2.870.000.000 de km do Sol, equivalente a 19,18 vezes a distância da Terra ao Sol.

A inclinação axial próxima a 90º de Urano fá-lo girar praticamente "deitado"; por isso suas regiões equatoriais ficam muito fracamente expostas à luz e à energia solar a maior parte do tempo, especialmente por ocasião dos solstícios de Urano. O que ainda permanece incógnito e sem resposta clara é o fato de a temperatura destas regiões não serem menores do que as temperaturas registradas nos pólos; estes, em função da inclinação axial, ficam alternadamente expostos o tempo inteiro à radiação solar. É provável que haja algum tipo de geração de calor e que a dinâmica atmosférica deste planeta promova, de alguma forma, o aquecimento das regiões equatoriais, mas até o momento não há consenso entre os cientistas sobre como isto se dá.

Descobrimento

Urano foi o primeiro planeta descoberto que não era conhecido na antiguidade, embora tenha sido observado e confundido com uma estrela em muitas ocasiões. O registro mais antigo dele se deve a John Flamsteed, que o catalogou como a estrela 34 Tauri em 1690.

Foi observado por John Flamsteed, em 1690, mas foi registrado como uma estrela, assim como ocorreu a Galileu, que entre 1612 e 1613 observou Urano em algumas ocasiões pelo telescópio, mas o registrou como diferentes estrelas.[carece de fontes?] Numa das ocasiões, Galileu chegou a se surpreender com o fato de ter "anotado incorretamente" a posição daquela "estrela" no dia anterior, e limitou-se a "corrigir" a posição, sem cogitar a possibilidade de tratar-se de um movimento angular real do objeto e perdendo a oportunidade de adicionar mais este mérito à sua extensa lista de contribuições à Ciência.

Sir William Herschel, um músico alemão da corte do rei Jorge III da Inglaterra, descobriu o planeta Urano em 13 de março de 1781, usando um telescópio construído por ele mesmo, embora a princípio relatasse que se tratava de um cometa. Inicialmente deu-o ao nome do Georgium Sidus (estrela de Jorge) na honra ao rei que acabava de perder as colônias britânicas na América, mas tinha ganho uma estrela. No entanto, o nome não demorou para mudar para Grã-Bretanha, e Joseph Lalande, um astrônomo francês, propôs a chamá-lo Herschel em honra de seu descobridor. Finalmente, o astrônomo alemão Johann Elert Bode propôs o nome de Urano em honra ao deus grego, pai de Cronos – cujo equivalente Romano era chamado de Saturno. Em 1827, o nome Urano era mais usado para o planeta que Grã-Bretanha. O HM Nautical Almanac continuou listando como Georgium Sidus até o ano de 1850.

Composição e estrutura interna


Urano tem um núcleo composto de rochas e gelo de diferentes tipos, este último muito mais abundante. O planeta tem uma densa atmosfera formada por uma mistura de hidrogênio e hélio que pode representar até 15% da massa planetária. Urano (assim como Neptuno) é em muitos aspectos um gigante gasoso cujo crescimento se interrompeu sem ter acumulado as grandes massas dos gigantes planetas gasosos internos Júpiter e Saturno.

Em Urano há uma transição gradual da atmosfera para oceano líquido. Conseqüentemente, o oceano de Urano não se parece em nada com o terrestre. A superfície de Urano não é propícia a vida, porque a pressão e o frio são extremos, além disso os raios solares não ultrapassam mais que umas centenas de metros na atmosfera.

Inclinação do eixo de rotação

Urano possui um movimento de rotação retrogrado, similar apenas como o de Vênus. Seu eixo de rotação tem quase noventa graus de inclinação em relação ao plano orbital. Durante seu período orbital de 84 anos, alternadamente, cada um dos pólos é iluminado permanentemente pelo Sol, enquanto o outro permanece na sombra.

Conseqüentemente espera-se que este planeta tenha importantes efeitos sazonais em sua atmosfera. Não são conhecidos os motivos da inclinação do planeta, porém imagina-se que durante sua formação o planeta tenho colidido com um outro grande planeta capaz de produzir esta orientação anormal. Sendo outra possibilidade os distúrbios gravitacionais exercidos por outros planetas gigantes do sistema solar. Durante a passagem da Voyager 2, em 1986, o pólo sul de Urano estava apontando praticamente para o sol. Era o "verão" do hemisfério sul. Nesse tempo as nuvens do planeta estavam fracamente distribuídas em faixas e em zonas perceptíveis. As observações mais recentes do Telescópio Espacial Hubble mostram uma estrutura mais dinâmica à medida que os raios solares alcançam as latitudes equatoriais. Em 2007 o sol iluminará diretamente o equador do planeta (equinócio).

Em 23 de agosto de 2006, os astrônomos da universidade de Wisconsin-Madison usando a câmera avançada para Estudos ACS do Telescópio Espacial Hubble, fizeram uma imagem de uma macha escura em Urano em formato prolongado e medindo 1.700 por 3.000 quilômetros.

Campo magnético

O Campo magnético de Urano é também anormal em suas posição e características, o eixo magnético não é centrado no planeta, ele é deslocado e inclinado em 60º em relação com o eixo de rotação. O campo magnético é originado provavelmente em zonas não muito profundas do planeta. Netuno também tem um campo magnético deslocado, razão porque é possível que o curioso eixo magnético de Urano não está limitado às peculiaridades de seu eixo de rotação. Por outro lado, o campo magnético de Urano é bem similar aos outros planetas gasosos. No entanto está comprovado que o campo magnético de Urano tem características especiais. O campo magnético de Urano é um pouco menos intenso que o campo magnético da Terra, mas ao contrário da Terra, Urano não tem elementos metálicos em seu interior. Conseqüentemente, o campo magnético é gerado por outro tipo de material condutor.

Anéis

Em 1977, foram descobertos os primeiros nove anéis de Urano. Durante os encontros da Voyager, estes anéis foram fotografados e medidos, tal como outros dois anéis. Os anéis de Urano são muito diferentes dos de Júpiter e Saturno. O anel épsilon exterior é composto principalmente por blocos de gelo com vários metros de diâmetro. Uma distribuição muito ténue de poeira fina também parece estar dispersa pelo sistema de anéis. Pode existir um grande número de anéis estreitos, ou possivelmente anéis incompletos ou arcos de anéis, tão pequenos quanto 50 metros (160 pés) de largura. Descobriu-se que as partículas individuais dos anéis são de baixa reflectividade. Descobriu-se que pelo menos um anel, o épsilon, tem a cor cinzenta. As luas Cordelia e Ofélia agem como satélites pastores (satélites que pela atuação de sua força gravitacional, controlam o tamanho do anel) para o anel épsilon.

Luas

Urano tem 27 satélites naturais conhecidos. Nenhum deles possui atmosfera. Os nomes dos satélites de Urano foram retirados de personagens de várias peças de William Shakespeare e de obras de Alexander Pope, especialmente os personagens principais femininos deles. Referimos a seguir o nome delas, bem como a obra literária a que estão associadas:

* Oberon (Sonho de uma noite de verão de Shakespeare)
* Titânia (Sonho de uma noite de verão, de Shakespeare)
* Umbriel (The Rape of the lock, de Alexander Pope)
* Ariel (A Tempestade, de Shakespeare)
* Miranda (A Tempestade, de Shakespeare)
* Puck (Sonho de uma noite de verão, de Shakespeare)
* Pórcia (O Mercador de Veneza, de Shakespeare)
* Julieta (Romeu e Julieta, de Shakespeare)
* Créssida (Troilo e Créssida, de Shakespeare)
* Rosalinda (Como lhe aprouver - As You Like It, de Shakespeare)
* Belinda (Rape of the lock, de Pope)
* Desdémona (Otelo, de Shakespeare)
* Cordélia (Rei Lear, de Shakespeare)
* Ofélia (Hamlet, de Shakespeare)
* Bianca (A megera domada - Taming of the Shrew - de Shakespeare)
* Sycorax (Mãe do Monstro Caliban - A tempestade - de Shakespeare)

Os satélites maiores são Titânia e Oberon, de tamanho semelhante (1580 e 1520 km de diâmetro, respectivamente). Outros satélites importantes são Umbriel, Ariel e Miranda. Eram estes os cinco satélites conhecidos de Urano antes da chegada da Voyager 2. Astrônomos localizaram-nos entre 1787 e 1848.

Os satélites maiores foram fotografados pela sonda espacial Voyager 2 entre1985 e 1986. As fotos tiradas por ela ainda são as imagens de maior resolução que temos destas luas tão distantes.

Nos meses anteriores à chegada da Voyager 2 sua câmera foi dedicada à exploração do plano equatorial para descobrir novos satélites invisíveis da Terra. Ela encontrou 10 luas com diâmetros de 40 a 160 kms. Elas estão localizadas entre os anéis mais externo e Miranda. Posteriormente, a partir dos anos 90, o Telescópio Espacial Hubble permitiu aumentar o número de satélites conhecidos para um total de 27.

Miranda, um satélite de apenas 470 kms de diâmetro. Ele tem o precipício mais alto do Sistema solar (Verona Rupes); uma parede muito alta com 20 km altura (10 vezes mais altas que as paredes do Grand Canyon, na Terra).
 

Grunge

GF Ouro
Membro Inactivo
Entrou
Ago 29, 2007
Mensagens
5,124
Gostos Recebidos
0
Neptuno

neptuno1.jpg


Neptuno é o oitavo planeta do Sistema Solar, desde o rebaixamento de Plutão para a categoria de planeta-anão, e o último, em ordem de afastamento a partir do Sol. Neptuno recebeu o nome do deus romano dos mares.

Características físicas


Orbitando tão longe do Sol, Neptuno recebe muito pouco calor. A sua temperatura superficial média é de -218 °C. No entanto, o planeta parece ter uma fonte interna de calor. Pensa-se que isto se deve ao calor restante, gerado pela matéria em queda durante o nascimento do planeta, que agora irradia pelo espaço fora. A atmosfera de Neptuno tem as mais altas velocidades de ventos no sistema solar, que são acima de 2000 km/h; acredita-se que os ventos são amplificados por este fluxo interno de calor. A estrutura interna lembra a de Urano -- um núcleo rochoso coberto por uma crosta de gelo, escondida no profundo de sua grossa atmosfera. Os dois terços internos de Neptuno são compostos de uma mistura de rocha fundida, água, amônia líquida e metano. A terça parte exterior é uma mistura de gases aquecidos composta por hidrogênio, hélio, água e metano. Como Urano e diferentemente da composição uniforme de Júpiter e Saturno, acredita-se que a estrutura interna de Neptuno consiste de três camadas. Como Urano, o campo magnético de Neptuno é muito inclinado em relação ao seu eixo rotacional, a 47°, e desviado em no mínimo 0,55 radianos (cerca de 13500 quilômetros) do centro físico do planeta. Comparando o campo magnético dos dois planetas, os cientistas acham que esta orientação extrema se deve aos característicos fluxos no interior do planeta, e não do resultado da orientação lateral de Urano. Em Neptuno ocorrem os ventos mais fortes do sistema solar, em tempestades relampejantes com rajadas de 2400km/h.

Estrutura de Neptuno

Os desenhos astronómicos de Galileu mostram que ele observou Neptuno em Janeiro de 1613, quando o planeta estava perto de Júpiter. Mas, como pensou que se tratasse de uma estrela, não lhe pode ser creditada a descoberta.

Em 1821, Alexis Bouvard publicou tabelas astronómicas da órbita de Urano. Observações subsequentes revelaram desvios substanciais das tabelas, levando Bouvard a pôr a hipótese da existência de um corpo que perturbasse a órbita. Em 1843, John Couch Adams calculou a órbita de um oitavo planeta que pudesse explicar o movimento de Urano. Enviou os seus cálculos a Sir George Airy, que os rejeitou com alguma frieza, levando Adams a abandonar o assunto.

Em 1846, Urbain Le Verrier, independentemente de Adams, reproduziu os seus cálculos mas também deparou com dificuldades em encorajar algum entusiasmo nos seus compatriotas. No entanto, no mesmo ano, John Herschel começou a promover a abordagem matemática e convenceu James Challis a procurar o planeta.

A planeta também foi explorado pelo Programa Voyager e futuramente pela Neptune/Triton Orbiter.

Anéis

Embora não sejam visíveis nas fotografias do telescópio espacial Hubble, Neptuno faz parte dos planetas gigantes que possuem um complexo sistema de anéis. Possui cinco anéis principais e sua descoberta se deve a uma observação efetuada ainda em 1984 a bordo de um avião U2 que acompanhou o deslocamento do planeta por algumas horas durante a ocultação de uma estrela.

Luas

Neptuno tem 13 luas conhecidas. A maior delas é Tritão, descoberta por William Lassell apenas 17 dias depois da descoberta de Neptuno.

Alguns asteróides dividem os mesmos nomes que as luas de Neptuno: 74 Galateia, 1162 Larissa. Em algumas partes dos anéis, ocorrem regiões de concentração. Isso provavelmente tem origem em satélites pastores, muito próximos aos anéis, e alterando suas formas atraindo gravitacionalmente e aglomerando as partículas e fragmentos gelo-rochosos componentes dos anéis.
 

orban89

Moderador
Team GForum
Entrou
Set 18, 2023
Mensagens
1,883
Gostos Recebidos
47

O PLANETA 9 NÃO EXISTE MAIS!!!​



 

orban89

Moderador
Team GForum
Entrou
Set 18, 2023
Mensagens
1,883
Gostos Recebidos
47

JAMES WEBB FAZ DESCOBERTA IMPRESSIONANTE NA ATMOSFERA DE JÚPITER​


 

orban89

Moderador
Team GForum
Entrou
Set 18, 2023
Mensagens
1,883
Gostos Recebidos
47

DESCOBERTO OXIGÊNIO EM VÊNUS​



 
Topo